If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2p^2=4
We move all terms to the left:
2p^2-(4)=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $
| 3×+2y=19 | | (5x-3)-(4x-9)=0 | | 4(v+3)=20 | | 24x2+9x4+-2X6=0 | | √25=x | | x+1/2x=0 | | 14√x+15=71 | | 40=3w+16 | | 3x^2+10.25x-7=0 | | 4a-3a+5=20 | | 3x^2+41/4x-7=0 | | -s+-3s+-15=17 | | 3a-2a=16 | | Y=1.23^x | | 18x-7+11=6x-5+x | | 6t^2+13+6=0 | | 9x+5-87=89 | | 2x-12+9=11 | | 20=0.4m | | v2= 2 | | 3x-1,5=-1/2x+2 | | 4u^2–25u+6=0 | | z3=216 | | 7x-14=8x=4 | | 8x-2/3=x+4/3 | | 75.39+k+41.1=-28.946 | | l+6.3=16.3 | | t=-16t^2+72t^2+7 | | 7x^2-8x=5 | | 12x+36x=312 | | x^2=48x+3 | | 2x^2+8x=34 |